

www.oralfacialarts.com

www.edmclaren.com

Ceramics in Dentistry

- Critical Material Properties relative to clinical fallure- what really causes things to break?
- Simplified Classification system
- Ceramic system selection- which system for which case
- Feldspathic? Glass Ceramics ? what type ? pressed or machined ?
- When to inlay vs. onlay, when to Veneer vs. when to Crown-What type of Crown
- Zirconia Issues

Flexural Strength of Ceramic Cores and Veneering Porcelains

Zirconia Materials

Giordano RA
the myth of theoretical strength
there can be up to a 90\% drop off in strength
depending on processing flaws

how can that be? i.e. what causes it to be weaker and fail?

CRTICAL ELEMENTS
that cause material fallure

- POROSITY AND PROCESSING FLAWS
- CONTAMINANTS

A SEM image of a broken wrought iron rivet. Note the very large piece of SLAG, and how much bigger is the hole it formed than those around the small pieces. the bigger the pieces are the ones causing the loss in strength.

CRITICAL ELEMENTS that cause material failure

just because someone has the same material it does not mean they use the same processing technique:

My Car

Flexural Strength of Ceramic materials with various treatments

HOW ARE CERAMICS CLASSIFIED ?
HOW SHOULDTHEY BE CLASSIFIED ?

TREATMENT PLANNING goals/philosophy

1. Establish a patient appropriate ESTHETIC outcome that maintains the biologic health, and structural integrity of the teeth, gingiva and bone.
2. To do this as conservatively as possible with materials and techniques that maintain longterm durability.

TREATMENT PLANNING

to restore or not to restore?

to grind or to move ?

Rule \# 1: The teeth would have need restoration anyway
Rule \#2: I will not cross the DEJ with a bur when another form of treatment could have satisfied the Esthetic Goals -
i.e. I move and then restore if necessary

consistent with the treatment goals this is how i select a ceramic system

- FIRST CHOICE: feldspathic ceramics or bonded porcelain (i.e. power/liquid) Category I ceramics
- SECOND CHOICE: glass ceramics (i.e. glass matrix materials that are pressed or machined) Category 2 ceramics
- THIRD CHOICE: densely sintered crystalline ceramics (i.e. alumina or zirconia core systems) Category 3 ceramics
- FORTH CHOICE: metal ceramics Category 4 ceramics

WHAT ARE THE THINGS WE SHOULD EVALUATETO DETERMINE WHAT CERAMIC SYSTEMTO CHOOSE ?
I) Space requirements for workability of the material and shade change?
2) Substrate Condition or What's Underneath?
enamel (how much) ? dentin ? (what type)
3) Flexure Risk Assessment or What's the potential for flexure? low? medium? high?
4) Excessive Shear and Tensile Stress Risk Assessment?
low? medium? high?
5) Bond or Seal Maintenance Risk Assessment? low? medium? high?

\square
I) Space requirements for workability of the material and shade change?, 0.2 mm to 0.3 mm for each shade change and minimum thickness 0.3 mm
2) Substrate Condition or What's Underneath? : 50% or more remaining enamel on the tooth, 50% or more of the bonded substrate is enamel, 70% or more of the margin is in enamel, If bonding to some dentin substrate the dentin is mostly unaffected and superficial dentin.
3) Flexure Risk Assessment or What's the potential for flexure? low to low/medium
4) Excessive Shear and Tensile Stress Risk Assessment? low to low/medium

5) Bond or Seal Maintenance Risk Assessment? Absolute low risk of bond/ seal failure

ECR'S

1. To Prepare or not to Prepare? you have to decide do I grind on teeth or do I grind on the porcelain and then
2. If We are going to Preparethen how much?

Summary for Category 1 material use: (1) Generally indicated for anterior teeth. (2) Occasional bicuspid use, and rare molar use would be acceptable only with all parameters at the least risk level.

Category 1 materials are ideal with significant enamel remaining on the tooth, and generally with low flexure and stress risk assessment. Category 1 use absolutely requires long-term bond maintenance for success.

guidelines for when to do glass ceramics (Category 2) vs. feldspathic porcelain (Category I)
I) Space requirements for workability of the material and shade change?. 0.8 mm minimum working thickness facial and incisal- can thin to margin to 0.3 mm , and 0.2 to 0.3 mm for each shade change
2) Substrate Condition or What's Underneath? Less than 50% enamel remaining on the tooth, less than 50% of the bonded substrate is enamel, and 30% or more of the margin is in dentin.
3) Flexure Risk Assessment or What's the potential for flexure? Medium or less: Empress. Vita Mark 2, and Authentic type glass ceramics or Layered E.Max indicated. Medium to Medium/high- Monolithic E.max indicated (only early data)
4) Excessive Shear and Tensile Stress Risk Assessment? Medium or less: Empress, Vita Mark 2, and Authentic type glass ceramics or Layered E.Max indicated. Medium to Medium/ high-- Monolithic E.max indicated (only early data)
5) Bond or Seal Maintenance Risk Assessment? Low risk of bond/ seal failure for Empress,Vita Mark 2, and Authentic type glass ceramics or Layered E.Max. Medium for monolithic E.Max

- MINDFUL MACHINE USE- "THE Digital Dental Team"

I. Digital impressions and Rapid Design and Machining

3.The Enamelizer

E.MAX ? EMPRESS CAD ? VITABLOCKS ?

I. if you are pressing: E.Max for max strength Empress or Authentic for max esthetics (this will change with new porcelain
2. if you are machining: all 3 have shown similar clinical success bonded in monolithic form
3. if you are going to layer machined: then E.MAX (high stress) for any single tooth anterior or posterior:Vitablocks and Empress for anterior layering only (highest esthetics).

Summary for Category 2 material use: Pressed or Machined glass ceramic material like Empress, Mark 2, and Authentic are indicated for thicker veneers, anterior crowns, and posterior inlay and onlays where medium or less flexure and shear and tensile stress risk is documented.

Also, they are only indicated in clinical situations where long term bond and seal can be maintained. E.Max which is a different type of glass ceramic (that has higher toughness) is also indicated for the same clinical situations as the other glass ceramics but can be extended for single teeth use in higher stress situations (as in molar crowns) as long as it is used in a full contour monolithic form and cemented with a resin cement.

Guidelines for when to do a Crown vs. Onlay (Category 3 or 4)
I) Space requirements for workability of the material and shade change?。 1.2 mm minimum Cat 3 , 1.5 mm minimum CAT 4 . need 1.5 mm to mask for CAT 3
2) Substrate Condition or What's Underneath?: Most of the enamel is gone on the tooth. most of the margin is in dentin, dentin substrate is compromised, very little tooth structure would need to be removed to create a crown preparation, large composite or post and core
3) Flexure Risk Assessment or What's the potential for flexure? High or less:
4) Excessive Shear and Tensile Stress Risk Assessment? High or less:
5) Bond or Seal Maintenance Risk Assessment? High or less: MOST IMPORTANT QUESTION FOR CHOOSING A CROWN

WHAT CERAMIC/material SHOULD I USE ?

- THIRD CHOICE: densely sintered crystalline ceramics (i.e. alumina or zirconia core systems) Category 3 ceramics

what type of crown system ?

question 5] CAN I PROTECT THE INTERNAL INTERFACE?

- METAL-CERAMICS any where / any cement
. PARTIALLY STABILIZED ZIRCONIA (properly thermally treated) anywhere / data looks good for conventional cement i.e. any cement
- Alumina IN-Ceram or Procera up to the first molar i.e resin cement
- Spinell anterior teeth i.e pesin cement
- Lithium Disilicate- E.Max (long term data not available) bonding strongly recommended I.E. RESIN

BELIEF:There is a specific chemical or manufacturing problem with the porcelains for Zirconia because of the chipping and pitting problem

- since 2004 over 1200 single units YZ, Lava, and others over 7 years (average approx. 5 years)
- 2 documented core fractures
- over 30 3-unit posterior FPD's
- I documented framework fracture
- approx. 6 \% restorations replaced for porcelain fracture
- minor chipping noted on approx. 15% of the samples- not requiring replacement
- since 2007 slightly over 300 single units of YZ, Lava, and Procera all Done with VM9 with new firing parameter (average 2.5 years)
- no documented core fractures
- I restoration replaced for porcelain fracture
- 2 minor marginal ridge fractures noted

Least Problems seen with VM9 Vita CZR Noritake

over 200 veneers (VM9) at 2 years- virtually no porcelain chipping especially when bonded to enamel

RESEARCH- CRITICAL ELEMENTS that cause Zirconia VENEER failure

THERMAL INCOMPATIBILITY WITH CORE MATERIAL i.e. CTE (the amount of expansion over a temperature range]
BONDING INTERFACE ceramic/core
STRUCTURAL SUPPORT FOR THE VENEER CERAMIC UNDER-FIRING OF PORCELAIN
DIFFERENCES IN THERMAL DIFFUSIVITY BETWEEN VENEER AND CORE MATERIAL-the rate materials take up and give off heat]

PROPERTY	Y-TZP	Glass/ Porcelain	ALUMINA
Hardness (HV_{30})	1350	700	1600
Flexural Str. (MPa)	800-1200	80-100	400-600
Young's Modulus [GPa]	205	70-80	380
Fracture Toughness (MPa. m ${ }^{-1 / 2}$)	9.5	.8-1.5	4.5
CTE $\left(\times 10^{-60} \mathrm{c}^{-1}\right)$	10	7-14	8
Thermal Conductivity ($\mathbf{W} . \mathrm{m}^{-1} \cdot \mathrm{~K}^{-1}$)	. 5 to 2	1.5-5	20-35

4-POINT PEEL TEST

FAILURE MODES IN 4-POINT PEEL TEST

BONDING AGENT no SB

COMPLEX
IN PORCELAIN, IN BONDER, \& INTERFACIAL

SANDBLASTING + PORCELAIN

COHESIVE FRACTURE
COMPLETELY WITHIN PORCELAIN

- slow cool main bakes 3 minutes leave on muffle for 4 mins (7 minutes)
- SLOW COOL-ONTHE GLAZE CYCLEhigh temp to 500 degrees- 6 min
- leave on muffle for 10 minutes until about 200 degrees C on glaze cycle thus a total slow cool is 16 min ONTHE LAST BAKE

MYTH \#3 : You should not SAND BLAST Zirconia

question: what surface are you talking about ?

- SUZANNE SHERRERER, SHANEWHITE, OTHER OTHERS HAVE ALL SHOWED THAT MILD SAND BLASTING OF ALREADY MACHINED PIECES DOES NOT WEAKENTHE ZIRCONIA
- GIORDANO,WHITE \& MCLAREN- LIGHT SANDBLASTING INCREASED BOND STRENGTH OF PORCELAIN
- KERN, BLATZ HAVE SHOWN INCREASED BOND STRENGTH AND BETTER SEAL WITH SAND BLASTING THE INTERNAL (cementing surface)

- POST LAVA MACHINED ZIRCONIA BARS
- 50 um $\mathrm{AL}_{2} \mathrm{O}_{3}$ at 20 psi for 10 seconds- at I inch
- statistically no difference in 3 point flexure test

DVS and Coping and Fusion

FAILURE MODES for LAVA ZIRCONIA

PPPP	
ZPPP	
ZZPP	
ZZZP	
PPPZ	
PPZZ	
PZZZ	
$Z Z Z Z$	

TENSILE STRENGTH / MOR (MPa) for LAVA ZIRCONIA

CLINICAL FAILURE!
HOLLOW GRIND THE MARGINAL RIDGE ADJACENTTO THE EDENTULOUS SPACE

